Statistical model for reproducibility in ranking-based feature selection
نویسندگان
چکیده
منابع مشابه
Single Feature Ranking and Binary Particle Swarm Optimisation Based Feature Subset Ranking for Feature Selection
This paper proposes two wrapper based feature selection approaches, which are single feature ranking and binary particle swarm optimisation (BPSO) based feature subset ranking. In the first approach, individual features are ranked according to the classification accuracy so that feature selection can be accomplished by using only a few top-ranked features for classification. In the second appro...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملFeature Selection for Fluency Ranking
Fluency rankers are used in modern sentence generation systems to pick sentences that are not just grammatical, but also fluent. It has been shown that feature-based models, such as maximum entropy models, work well for this task. Since maximum entropy models allow for incorporation of arbitrary real-valued features, it is often attractive to create very general feature templates, that create a...
متن کاملWrapper for Ranking Feature Selection
We propose a new feature selection criterion not based on calculated measures between attributes, or complex and costly distance calculations. Applying a wrapper to the output of a new attribute ranking method, we obtain a minimum subset with the same error rate as the original data. The experiments were compared to two other algorithms with the same results, but with a very short computation t...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge and Information Systems
سال: 2020
ISSN: 0219-1377,0219-3116
DOI: 10.1007/s10115-020-01519-3